

Building Networks

Electronics

Slide 1 of 31

- Products whose primary function is information (acquire, process, store, transmit, display)
- Lighting
- **Climate Control**
- Security
- Other (Appliances, Misc.)
- Future: All one network
 - separation only for illustration

Slide 3 of 31

Key Network Concepts

How networks drive energy use

- Direct
 - -Network Interfaces (NICs)
 - -Network products
- **Induced in Networked products**
 - -Increased power levels
 - -Increased time in higher power modes

Connection types

- -Data: 2 products
- -Network: 3 or more products

Slide 4 of 31

Key Network Concepts, cont.

FICIENT

DIGITAL

OSI Network Model

Name **Function**

"I want a web page" **Application layer**

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

"Bits on a wire" (or non-wire) 1 Physical layer

(8th layer — User Interface)

Key Network Concepts, cont.

OSI Network Model

Function Name

Application layer "I want a web page"

Presentation lay Key Advantages Session layer

Can replace individual layers without Transport I

affecting higher and lower layers Network lay • Facilitates interoperability

Data link la • All revolves around Internet Protocol

"Bits on a wire" (or non-wire) **Physical layer**

(8th layer — User Interface)

Past Experience with Networks

- IT Networks
 - Not designed with Energy in mind
 - Energy people not involved in design
 - "Tacking on" energy features not successful
 - Community not opposed to working with energy people
- CE Networks
 - A mess at all layers
 - Energy/efficiency not a priority
 - Progress possible if we do most work and use leverage
- **Sensor Networks**

Your CE Future?

While some integrators are skeptical about the prewired preprogrammed NHS rack from Sony, others embrace the solution for its simplicity.

Slide 8 of 31

Imagining the Future

- Incrementalism (alone) the path to nowhere
 - Need quantum leaps to make significant progress
 - Internet is a key example
 - Incrementalism is how to implement
- Figure out where we want to get to ...
 - ... then chart path from here to there

Let's consider two possible futures (2028) ...

LAWRENCE BERKELEY NATIONAL LABORATORY Slide 9 of 31

A "Darwinian" Future

Highly networked buildings use more energy than others

- Building networks installed principally for reasons other than saving energy.
- Promoters of specific (physical layer) technologies pursue their advantage at the expense of interoperability.
- Efficiency an afterthought in network and product design.
- Energy efficiency not a major player in standards development.
- User interfaces neglected.
- Little coordination across end uses.

Slide 10 of 31

LAWRENCE BERKELEY NATIONAL LABORATORY

An "Intelligent Design" Future

Highly networked buildings use significantly less energy

Based on open international standards, and have:

- Sensors for occupancy, temperature, and ambient light.
- Controls that take into account presence*.
- Dynamic capabilities temperature, light, façade, ...
- Lighting that tracks activity.
- Climate control that follows preferences, outdoor climate (to indicate clothing), and occupancy.
- Preferences expressed through many means.
- Displays coordinated with occupancy and lighting.
- Diagnostics that make equipment failure easy to deal with.

(Some) Necessary steps for a good future

ENERGY

DIGITAL

NETWORKS

FFICIENT

- Adopt standard network technology up through
- Adopt goal of "universal interoperability", across:
 - Countries, time, end uses, building types, etc.
- Be prepared to jettison any/all existing technology
- Engage network research community into design of network architecture for buildings
- Start on this ASAP

A sketch of a model

Network architecture for buildings

Proposed 5-layer model for building control networks (apologies to OSI)

User Interface <= One Standard

Diverse Standards => Applications

Communication* <= One Standard

Concepts*

<= One Standard

Transport

<= One Standard

Diverse Standards =>

Network, Data Link, Physical

- Policy and authority among multiple entities in buildings also key
- Global standards and diversity both essential for networks to be effective and usable

*Concepts may not be a true layer

ENERGY FFICIENT DIGITAL NETWORKS

Slide 13 of 31

Transport - Physical Layers

- Don't pick "winners"
 - But don't be surprised by success of IEEE 802
- All buildings will have multiple wired and wireless physical layer technologies
 - Will evolve over time
- Sensor networks are a special case
 - This discussion does not apply

Slide 14 of 31

Concepts

- Standardization of core ideas, terms, and underlying metaphors
 - the meaning (semantics) of the information
 - not how it is encoded or represented (except in the UI)
- **Examples**
 - Building elements (energy using or not) lights, climate control devices, windows, displays, and appliances
 - Ideas presence, schedules, prices, and events
 - Characteristics physical location, power levels, light
 - Existing example standard concepts
 - · ASCII, fonts, folders, PDF, HTML
- "Presence" a key concept
- A "vocabulary" of nouns

Slide 15 of 31

LAWRENCE BERKELEY NATIONAL LABORATORY

Communication

- Transmit information about identity, status, characteristics, requests, ...
- Negotiate policies about control

Application

- Application layer is about making decisions
- Need to facilitate multiple models for decisionmaking
- Locus of authority a key issue

Slide 16 of 31

LAWRENCE BERKELEY NATIONAL LABORATORY

User Interfaces

"Universal"

- · Consistent across:
 - Manufacturers
 - Products
 - Countries
- Simple
- Accessible
- Portable

Key Issues

ENERGY

DIGITAL

NETWORKS

FFICIENT

- **Presence**
 - How to sense, indicate
 - Types
- **Authority**
 - Who has it? When?
 - Adapting to circumstances
- Security / Privacy
- **Anomalies**
 - Device failure
 - Emergencies

Next Steps

- Adopt Building Network design as a key efficiency priority
- · Fund academic research on key topics
 - Presence, authority, security, user interfaces, network architecture, protocol design, ...
- Create new institutions as needed
- · Revisit related topics in light of this
 - Real-time pricing, demand response, "smart grids", ...
- Get started ASAP

Thank you!

Slide 20 of 31

Slide 19 of 31